Understanding the Behaviour of Complex Biomolecular Networks by Combining Logical and Semantic Modeling

نویسندگان

  • Ali Ayadi
  • Cecilia Zanni-Merk
  • François de Bertrand de Beuvron
چکیده

In literature, most researches related to the understanding of the behaviour of the cell networks focus only on some parts of the biomolecular network. However, to completely understand their behaviour over time we have to integrate the different parts of the biomolecular network and analyse them together. The objective of the present study is to propose to the biologist a platform to simulate the state changes of biomolecular networks with the hope of steering their behaviours. In this paper, we firstly present an efficient formalism to represent the dynamic behaviour of biomolecular networks. This logical model is based on the three levels of systems theory: structural, functional and behavioural modeling. We then propose a semantic approach based on four ontologies to formalise the domain knowledge of complex biomolecular networks. Both of these approaches provide the necessary elements to model, analyse and understand the dynamic behaviour and the transition states of these networks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Executive Approach Based On the Production of Fuzzy Ontology Using the Semantic Web Rule Language Method (SWRL)

Today, the need to deal with ambiguous information in semantic web languages is increasing. Ontology is an important part of the W3C standards for the semantic web, used to define a conceptual standard vocabulary for the exchange of data between systems, the provision of reusable databases, and the facilitation of collaboration across multiple systems. However, classical ontology is not enough ...

متن کامل

Link Prediction using Network Embedding based on Global Similarity

Background: The link prediction issue is one of the most widely used problems in complex network analysis. Link prediction requires knowing the background of previous link connections and combining them with available information. The link prediction local approaches with node structure objectives are fast in case of speed but are not accurate enough. On the other hand, the global link predicti...

متن کامل

Rainfall-runoff modelling using artificial neural networks (ANNs): modelling and understanding

In recent years, artificial neural networks (ANNs) have become one of the most promising tools in order to model complex hydrological processes such as the rainfall-runoff process. In many studies, ANNs have demonstrated superior results compared to alternative methods. ANNs are able to map underlying relationship between input and output data without prior understanding of the process under in...

متن کامل

Modeling Current and Future Potential Distributions of Caspian Pond Turtle (Mauremys caspica) under Climate Change Scenarios

Although turtles are the most threatened taxonomic group within the reptile class, we have a very limited understanding of how turtles respond to climate change. Here, we evaluated the effects of climate changes on the geographical distribution of Caspian pond turtle (Mauremys caspica). We used an ensemble approach by combining six species distribution models including artificial neural network...

متن کامل

Generating an Indoor space routing graph using semantic-geometric method

The development of indoor Location-Based Services faces various challenges that one of which is the method of generating indoor routing graph. Due to the weaknesses of purely geometric methods for generating indoor routing graphs, a semantic-geometric method is proposed to cover the existing gaps in combining the semantic and geometric methods in this study. The proposed method uses the CityGML...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016